The CROP Circle is an easy-to-use diagram that illustrates proper planting and harvesting times for 18 crops commonly found in California school gardens. These are optimal and recommended planting and harvesting times that can be altered to better suit your individual microclimate or school calendar. The Circle is divided into four seasons with each individual crop in its own concentric circle. The colored bars represent the months most suitable for planting that specific crop and the hash marks represent the months most suitable for harvesting that same crop. The days indicated in the parentheses are the approximate number of days after planting for the crop to reach maturity and be ready to harvest.
Using the information located on the CROP Circle, choose five different crops and determine the mean (average) number of days until harvest for each crop. Round your answer to the nearest whole number.

Example:

Radish (21-30 days until harvest)

\[
\frac{21 + 30}{2} = 25.5 = 26
\]

Using the CROP Circle diagram as a guide, determine the number of months each crop can be planted out of the year. Represent your findings in the form of a decimal, fraction and percent.

Example:

Broccoli is planted in the months of January, February, July and December. You can plant broccoli four months out of the 12 months of the year.

Decimal: .33 Fraction: \(\frac{1}{3} \) Percentage: 33%

Which crop can you plant the most months of the year?

If you plant summer squash on May 30, on what approximate day can you plan to harvest? Assume the average number of days to harvest.

If you want to harvest cauliflower on November 1, approximately what day should you plant the crop? Assume the average number of days to harvest.

The following table illustrates the mean (average) number of days it takes for several crops to reach maturity and be ready for harvest. Complete the chart and create a bar graph to represent your data.

<table>
<thead>
<tr>
<th>Crop</th>
<th>Average Days to Harvest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrots</td>
<td>72.5</td>
</tr>
<tr>
<td>Leek</td>
<td></td>
</tr>
<tr>
<td>Eggplant</td>
<td></td>
</tr>
<tr>
<td>Celery</td>
<td></td>
</tr>
<tr>
<td>Cauliflower</td>
<td></td>
</tr>
<tr>
<td>Radish</td>
<td></td>
</tr>
</tbody>
</table>

Grade 4: Number Sense (NS) 1.3; Mathematical Reasoning (MR) 1.0, 2.5; Grade 5: Statistics, Data Analysis and Probability (SDP) 1.1; MR 1.0, 2.5; Grade 6: SDP 1.1

Grade 4: NS 1.6, 1.7, 3.2, 3.4; MR 2.3; Grade 5: NS 1.2; MR 2.3; Grade 6: NS 1.2; MR 2.4

Grade 4: SDP 1.0, MR 2.3; Grade 5: SDP 1.2, MR 2.3; Grade 6: MR 2.4

Grade 4: NS 3.1; MR 2.2; Grade 5: MR 2.2; Grade 6: NS 2.3

Grade 4: SDP 1.0, MR 2.3; Grade 5: SDP 1.2, MR 2.3; Grade 6: MR 2.4

Math Activities

School gardens are a valuable instrument for teaching core curricular subjects such as English-language arts, mathematics, science, history-social science, health, and visual and performing arts—all with an agricultural twist. The possibilities are endless! Here are a few examples of how to use this resource as a relevant tool to teach key math concepts, seasonality and plant growth, all while encouraging student interaction with the natural world. For more ideas on how to incorporate this resource into your classroom curriculum, visit www.LearnAboutAg.org/cropcircles.